Long-band light source for testing optical elements using feedback loop
2022-07-31
3120
72K
0
Disclosed is a long-band (L-band) light source capable of testing the characteristics of optical elements using a feedback loop in a fiber amplifier of an optical communication system. In the fiber amplifier including a rare earth doped fiber as an amplification medium, forward and backward pump laser diodes, positioned on front and rear ends of the rare earth doped fiber, for generating and providing pumping lights to the rare earth doped fiber, first wavelength selective couplers for providing the pumping lights from the forward and backward pump laser diodes to the rare earth doped fiber, and optical isolators, inserted between front and rear ends of the first wavelength selective couplers, respectively, for intercepting backward lights reflected from input and output terminals of the fiber amplifier, the L-band light source comprises a feedback loop for making a seed beam incident to the rare earth doped fiber or making an amplified spontaneous emission (ASE) incident again to the rare earth doped fiber to reuse the seed beam or the ASE as the L-band light source for testing the optical elements, second wavelength selective couplers, provided between the optical isolators and the first wavelength selective couplers, respectively, for making the seed beam incident to the feedback loop or extracting and providing the ASE to the feedback loop, and a forward optical isolator, connected to the feedback loop, for intercepting a backward propagation of the seed beam or the ASE. The L-band light source can accurately test the characteristics of various kinds of optical elements used for optical communications.