Aluminium production cells with iron-based metal alloy anodes
2022-07-31
3240
544K
0
An iron-based metal anode for the electrowinning of aluminium by the electrolysis of alumina in a molten fluoride electrolyte has an electrochemically active integral outside oxide layer on an iron-based alloy that consists of 75 to 90 weight % iron; 0.5 to 5 weight % in total of at least one rare earth metal, in particular yttrium; 1 to 10 weight % aluminium; 0 to 10 weight % copper; 0 to 10 weight % nickel; and 0.5 to 5 weight % of other elements. The total amount of aluminium, copper and nickel is in the range from 5 to 20 weight %; and the total amount of rare earth metal(s), aluminium and copper is also in the range from 5 to 20 weight %. The electrochemically active surface layer is predominantly of iron oxide that slowly dissolves into the electrolyte during operation and is maintained by progressive slow oxidation of iron at the interface of the bulk metal of the alloy with the oxide layer. This progressive slow oxidation of iron corresponds to the dissolution of iron into the electrolyte which remains at or below saturation level at the operating temperature, the operating temperature being maintained sufficiently low to limit the contamination of the product aluminium to an acceptable level, and the electrolyte being circulated to maintain a sufficient concentration of alumina in the anode cathode gap.